Microsoft Kinect Visual and Depth Sensors for Breathing and Heart Rate Analysis
نویسندگان
چکیده
This paper is devoted to a new method of using Microsoft (MS) Kinect sensors for non-contact monitoring of breathing and heart rate estimation to detect possible medical and neurological disorders. Video sequences of facial features and thorax movements are recorded by MS Kinect image, depth and infrared sensors to enable their time analysis in selected regions of interest. The proposed methodology includes the use of computational methods and functional transforms for data selection, as well as their denoising, spectral analysis and visualization, in order to determine specific biomedical features. The results that were obtained verify the correspondence between the evaluation of the breathing frequency that was obtained from the image and infrared data of the mouth area and from the thorax movement that was recorded by the depth sensor. Spectral analysis of the time evolution of the mouth area video frames was also used for heart rate estimation. Results estimated from the image and infrared data of the mouth area were compared with those obtained by contact measurements by Garmin sensors (www.garmin.com). The study proves that simple image and depth sensors can be used to efficiently record biomedical multidimensional data with sufficient accuracy to detect selected biomedical features using specific methods of computational intelligence. The achieved accuracy for non-contact detection of breathing rate was 0.26% and the accuracy of heart rate estimation was 1.47% for the infrared sensor. The following results show how video frames with depth data can be used to differentiate different kinds of breathing. The proposed method enables us to obtain and analyse data for diagnostic purposes in the home environment or during physical activities, enabling efficient human-machine interaction.
منابع مشابه
Calibration of Kinect for Xbox One and Comparison between the Two Generations of Microsoft Sensors
In recent years, the videogame industry has been characterized by a great boost in gesture recognition and motion tracking, following the increasing request of creating immersive game experiences. The Microsoft Kinect sensor allows acquiring RGB, IR and depth images with a high frame rate. Because of the complementary nature of the information provided, it has proved an attractive resource for ...
متن کاملPlanelet Transform: A New Geometrical Wavelet for Compression of Kinect-like Depth Images
With the advent of cheap indoor RGB-D sensors, proper representation of piecewise planar depth images is crucial toward an effective compression method. Although there exist geometrical wavelets for optimal representation of piecewise constant and piecewise linear images (i.e. wedgelets and platelets), an adaptation to piecewise linear fractional functions which correspond to depth variation ov...
متن کاملHow Much Information Kinect Facial Depth Data Can Reveal About Identity, Gender and Ethnicity?
Human face images acquired using conventional 2D cameras may have inherent restrictions that hinder the inference of some specific information in the face. The low-cost depth sensors such as Microsoft Kinect introduced in late 2010 allow extracting directly 3D information, together with RGB color images. This provides new opportunities for computer vision and face analysis research. Although mo...
متن کاملBilingual corpus for AVASR using multiple sensors and depth information
In this paper we present the Bilingual Audio-Visual Corpus with Depth information (BAVCD). The database contains utterances of connected digits, spoken by 15 subjects in English and 6 subjects in Greek, and collected employing multiple audio-visual sensors. Among them, of particular interest is the use of the Microsoft Kinect device, which is able to capture facial depth images using the struct...
متن کاملUnobtrusive measurement of subtle nonverbal behaviors with the Microsoft Kinect
We describe two approaches for unobtrusively sensing subtle nonverbal behaviors using a consumer-level depth sensing camera. The first signal, respiratory rate, is estimated by measuring the visual expansion and contraction of the user’s chest cavity during inhalation and exhalation. Additionally, we detect a specific type of fidgeting behavior, known as “leg jiggling,” by measuring high-freque...
متن کامل